Power & Mobility (P&M)

A Modeling Methodology for the Analysis of Abradable Powder Piston Skirt Coatings

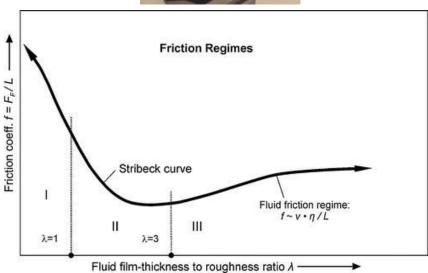
Daniel Nicklowitz, Mid-Michigan Research
Harold Schock, Mid-Michigan Research
Andy Suman, Line2Line Coatings
Jim Lowe, Line2Line Coatings
Ai LeGrande Wood, DRC Engineering

Power & Mobility (P&M)

Acknowledgement

This work is supported by SBIR Phase II, Department of Defense Contract No. W56HZV-20- C-0010- "High Temperature Wear Coatings for Improving High Output Military Diesel Engine Performance and Durability"

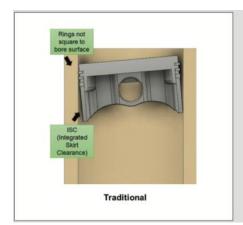
▶ Introduction	 Background on abradable powder coatings (APC)
Modeling Overview and Configuration	Piston Dynamics ModelingSurface Texture, Friction, and Wear Modeling
Simulation Results and Discussion	Piston DynamicsRing Wear
Optimization Methodology and Results	Optimized Vs. Original ProfileComparison with experimental FMEP
Conclusion and Future Work	Future Modeling EffortsExperimental Validation

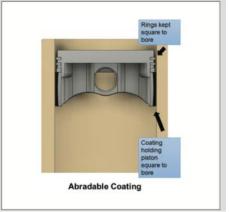


Abradable Powder Coatings (APC)

- Power & Mobility (P&M)

- A mechanism of clearance control between mating components.
- Reduces excess piston-to-liner volume introduced by manufacturing tolerances and variations in thermal/mechanical loading.
 - The volume between the skirt and cylinder liner is referred to as integrated skirt clearance (ISC).
- Coating is applied "thick" and abrades during operation.
 - Abrasion of the coating yields a unique optimum piston skirt geometry that minimizes boundary friction.
 - Surface texture and oil retention properties are improved through the abrasion process as well.





Abradable Powder Coatings (APC)

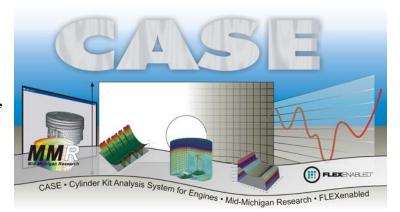
- Excess clearance (ISC) between the skirt and liner results in undesirable secondary (transverse) piston motion, noise, and vibration.
- Reducing the ISC (clearance volume) at the skirt-to-liner interface results in less secondary motion and improved engine durability.
 - Also reduces the relative motion between the piston and rings, improving ring durability and likely ring sealing capabilities.
- The coatings are soft as applied and can be applied over a wide range of thicknesses (15 250 microns).
- During operation, the high points on the surface abrade and leave an array of oil-retaining valleys. The improved oil retention further minimizes boundary contact between the piston and cylinder liner.

Prior to Break - In

After Break - In

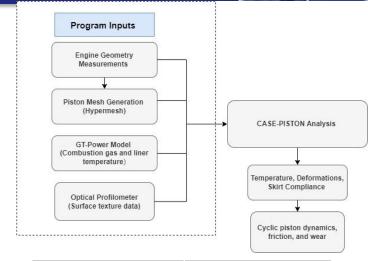
Summary of Study

- Two piston models generated:
 - One with the post-run stock coated geometry, and one with the post-run APC piston geometry.
- The pistons had been installed within two separate Cummins R2.8 L turbo diesel engines, both of which were subject to several hours of runtime.
- A measurement methodology has been developed to obtain pre- and post-run piston measurements.
- The effect of the APC piston geometry on piston secondary motion and ring wear is investigated.
- A skirt profile optimization methodology has been developed to investigate the geometric features of a piston skirt that lead to reduced frictional losses.
- Terminology:
 - APC: Abradable powder coated
 - ISC: Integrated skirt clearance
 - Boundary Contact: The direct interaction of surfaces without the separation of a lubricating film.


Introduction	 Background on abradable powder coatings (APC) 	
▶ Modeling Overview and Configuration	Piston Dynamics ModelingSurface Texture, Friction, and Wear Modeling	
Simulation Results and Discussion	Piston DynamicsRing Wear	
Optimization Methodology and Results	 Optimized Vs. Original Profile Hydrodynamic and Boundary Losses Comparison with experimental FMEP 	
Conclusion and Future Work	Future Modeling EffortsExperimental Validation	

Numerical Modeling of the Cylinder Kit

- Utilized the Cylinder-Kit Analysis System for Engines (CASE) by Mid-Michigan Research.
- CASE is a software package that predicts:
 - Piston: Thermal and mechanical deformations (including elastohydrodynamic), boundary and hydrodynamic frictional losses, axial and lateral piston dynamics, piston skirt wear.
 - Ring: Boundary and hydrodynamic frictional losses, ring dynamics (including ring collapse and uniform ring twist), gas flow dynamics, oil vaporization, ring face and groove side wear.
- Piston lateral dynamics constitute a highly nonlinear problem that is solved for iteratively considering the transverse forces acting on the piston due to:
 - Combustion gas pressure, connecting rod orientation, boundary forces between the piston and cylinder liner, and hydrodynamic forces developed at the piston skirt-to-liner interface.



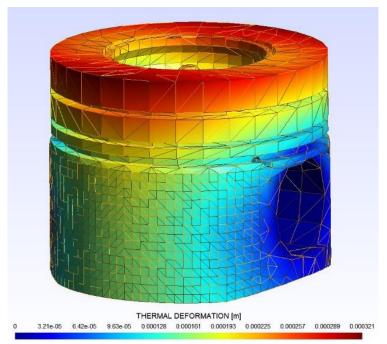
Model Inputs and Workflow

Power & Mobility (P&M)

12311/40

- Geometric inputs obtained via direct measurement of engine components.
 - CAD model generated in Siemens NX and then meshed in Altair Hypermesh.
- Combustion gas pressure obtained via experimental pressure transducer measurements.
 - Average of 250 cycles obtained at 0.1 crank angle degree increments.
- GT Power model was generated and calibrated using experimental data and turbocharger maps. This model was then used to estimate combustion gas and liner temperatures.
- Surface texture inputs for piston obtained via optical profilometry (Michigan Metrology). Bore surface texture inputs obtained via stylus profilometry and a literature review [1-2].
- Piston thermal boundary condition estimates obtained via literature review [3-5].

Parameter	Value
Engine Speed	2000 RPM
Bore Diameter	94.25 mm (At Operating Temp.)
Stock Piston Diameter	93.901 mm (Cold)
APC Piston Diameter	93.957 mm (Cold)
Stock Piston Ovality	-0.3505 mm
APC Piston Ovality	-0.4267 mm
Stroke	100 mm
Compression Ratio	16.9



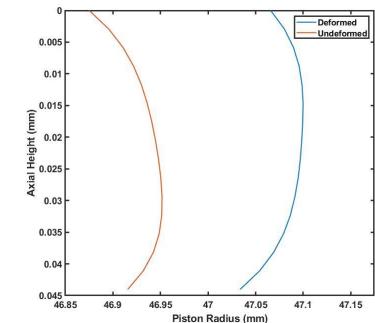
	Introduction	 Background on abradable powder coatings (APC) 	
	Modeling Overview and Configuration	 Piston Dynamics Modeling Surface Texture, Friction, and Wear Modeling 	
>	Simulation Results and Discussion	Piston DynamicsRing Wear	
	Optimization Methodology and Results	 Optimized Vs. Original Profile Hydrodynamic and Boundary Losses Comparison with experimental FMEP 	
•	Conclusion and Future Work	Future Modeling EffortsExperimental Validation	

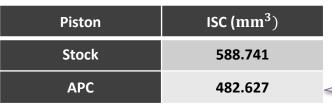
Modeling Thermal Distortions

Power & Mobility (P&M)

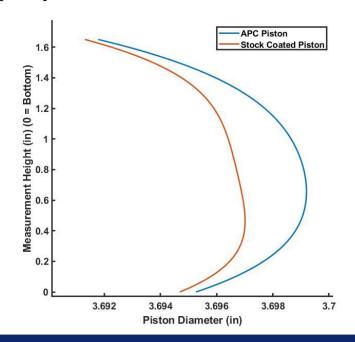
- ility (SM)
- Thermal expansion significantly alters the geometry and clearances at the skirt-to-liner interface.
- Maximum expansion on the piston skirt top is approximately 190 microns.

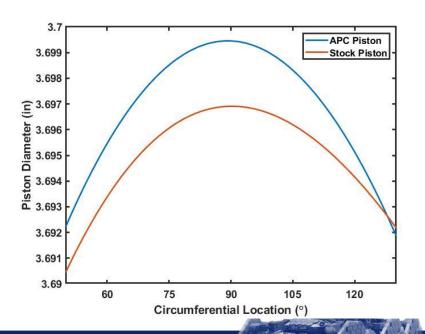
Figure: Predicted Piston Thermal Deformation




Figure: Stock Piston Radius Before and After Thermal Expansion

Worn APC Skirt Vs. Worn Stock Skirt


Power & Mobility (P&M)

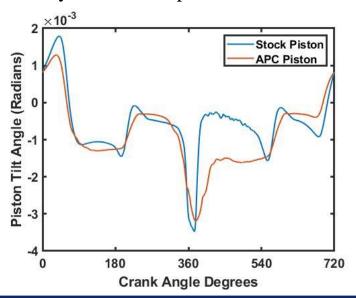

1981740

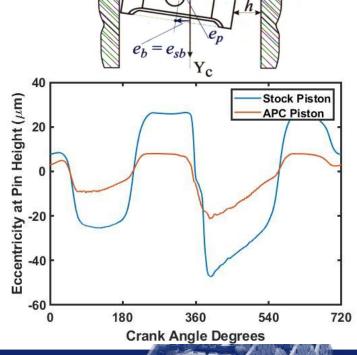
- Axial piston trace taken along skirt center.
 Circumferential trace taken at 0.632" from skirt bottom, at the gauge point.
- APC piston coating eliminates a significant amount of ISC.
- The Axial trace and circumferential trace are superimposed to determine the clearance around the skirt.

An 18% Reduction

^{*}Clearances above 0.02 inches were assumed to be off the skirt and were therefore filtered out of the ISC calculation

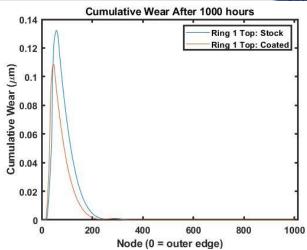
Piston Dynamics Modeling Results

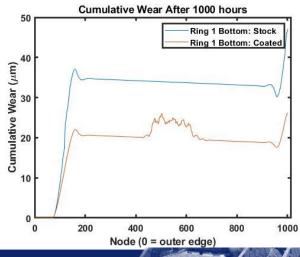

Power & Mobility (P&M)


MAJOR THRUST

MINOR THRUST

- *Piston eccentricities* = transverse position in the cylinder bore at several axial locations along the piston centerline.
- In general, the eccentricity at the pin height and the piston tilt angle are sufficient to characterize the secondary motion of the piston.
- The APC piston experiences a significant reduction in secondary motion and piston tilt.

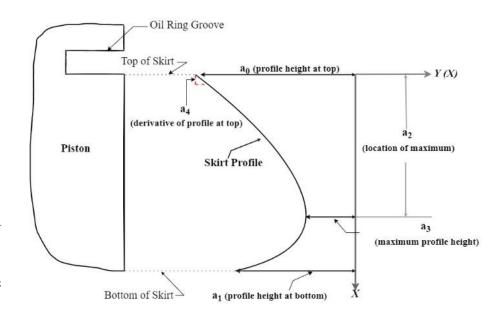



Ring Groove Side Wear Modeling

- Wear is proportional to the relative motion between the ring and groove.
- Archard's model used to estimate wear:

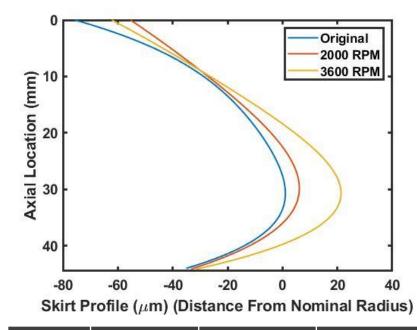
$$- \quad \psi = k(\frac{W_a L}{H})$$

- ψ = worn volume
- k = wear coefficient
- W_a = asperity contact load
- L =relative sliding distance
- H = surface hardness
- Piston secondary motion is a significant contributor to ring/groove relative motion, greatly influencing ring wear.
- The reduced secondary motion of the APC piston is predicted to yield a significant reduction in ring wear.



Introduction	 Background on abradable powder coatings (APC)
Modeling Overview and Configuration	 Piston Dynamics Modeling Surface Texture, Friction, and Wear Modeling
Simulation Results and Discussion	Piston DynamicsRing Wear
Optimization Methodology and Results	 Optimized Vs. Original Profile Hydrodynamic and Boundary Losses Comparison with experimental FMEP
Conclusion and Future Work	Future Modeling EffortsExperimental Validation

- Hypothesis: APC piston skirt profile will wear to minimize boundary contact between the skirt and cylinder liner.
- Objective: Minimize the average cyclic power loss over one engine cycle.
 - This is the product of piston velocity and frictional forces (both shear friction and contact friction).
- The Skirt profile is defined by a fourthorder polynomial which is calculated from 5 parametric values [a_0 through a_4].
- Constraint: Optimized skirt radius must be larger than the stock skirt radius, as the coating adds material to the piston skirt.



Optimization Results and Breakdown

- It can be estimated that 10% to 25% of engine frictional losses occur at the skirt-to-liner interface [14].
 - average of 17.5%
- FMEP = NMEP BMEP
- Experimental FMEP at 2000 RPM = $2.25 \ Bar = 3.52 \frac{HP}{Cylinder} \times 0.175 \approx 460 \ W$
- Measured FMEP at 3600 RPM = $2.75 \ bar \rightarrow \approx 1000 \ W$
- Measured FMEP values in close agreement with model prediction.
- An estimated 0.77% gain in peak power and BSFC.

RPM	Original	Optimized	% Reduction
2000	468.89 W	417.96 W	10.86 %
3600	1132.4 W	909.05 W	19.72 %

Conclusion and Future Work

- y Sentato
- Worn APC piston exhibits a significantly smaller ISC than the worn stock piston.
 - This yields a significant reduction in piston secondary motion. The reduction in secondary motion yields a significant reduction in ring groove side wear. This is expected to improve ring durability.
 - Experimental engine tests are underway to compare a stock engine to an engine with APC pistons.
- The optimization study suggests that the addition of material to the piston skirt can reduce friction by geometric changes.
- Moving Forward:
 - Improve the model inputs and relax assumptions including:
 - Constant thermal boundary conditions
 - Uniform bore diameter
 - "Fully flooded" skirt assumption
 - Analyze experimental engine data from two engines: one with APC pistons, and the other with a stock configuration.
 - Update model inputs with data from the more recent experimental engine runs.

References

- 1-318/40
- 1. Bewsher, Stephen Richard, et al. "Atomic Force Microscopic Measurement of a Used Cylinder Liner for Prediction of Boundary Friction." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 233, no. 7, 2018, pp. 1879–1889., https://doi.org/10.1177/0954407018792143.
- 2. Jocsak, Jeffrey, et al. "THE CHARACTERIZATION AND SIMULATION OF CYLINDER LINER SURFACE FINISHES." Asmedigitalcollection.asme.org, https://asmedigitalcollection.asme.org/ICES/proceedings/ICES2005/41847/457/308634.
- 3. Pistons and Engine Testing. Springer Fachmedien Wiesbaden, Imprint: Springer Vieweg, 2016.
- 4. 16. Ayatollahi, Majid R. & Mohammadi, F. & Chamani, Hamidreza. (2011). Thermo-Mechanical Fatigue Life Assessment of a Diesel Engine Piston. International Journal of Automotive Engineering. 1. 256-266.
- 5. Lu, Yaohui & Zhang, Xing & Xiang, Penglin & Dong, Dawei. (2016). Analysis of Thermal Temperature Fields and Thermal Stress under Steady Temperature field of Diesel Engine Piston. Applied Thermal Engineering. 113. 10.1016/j.applthermaleng.2016.11.070.

Optimization Results and Breakdown

- Optimized profiles yield a large decrease in boundary friction at the expense of a small increase in hydrodynamic friction.
 - A larger region of the skirt is supported by oil film as opposed to surface asperities, yielding the increase in hydrodynamic shear friction.
- Future optimization studies will include the piston ovality, which characterizes the skirt geometry around the piston circumference.
- Engine speed and load were varied, although thermal boundary conditions and bore diameter were held constant.
 - Future efforts will include the relaxation of this assumption and additional optimization studies.

CONFIGURATION	HYDRODYNAMIC	BOUNDARY
2000 RPM ORIGINAL	104.83 W	364.06 W
2000 RPM OPTIMIZED	105.46 W	312.50 W
3600 RPM ORIGINAL	364.06 W	759.92 W
3600 RPM OPTIMIZED	366.20 W	542.88 W