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Abradable Powder Coatings Power & Mobility
APC (P&M)

A mechanism of clearance control
between mating components.

* Reduces excess piston-to-liner
volume introduced by manufacturing
tolerances and variations in
thermal/mechanical loading.

— The volume between the skirt and

cylinder liner is referred to as
integrated skirt clearance (1SC).

* Coating is applied “thick” and abrades
during operation.

— Abrasion of the coating yields a

unique optimum piston skirt geometry 1 Sirbeck ct-m/r———'
that minimizes boundary friction. ! A

— Surface texture and oil retention 1 I " f~ven/L
i 1 = =3

properties are improved through the A
abrasion process as well. Fluid film-thickness to roughness ratio A ——————»

Friction Regimes

F/L —>

Friction coeff. f
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Abradable Powder Coatings Power & Mobility
APC (P&M)

» Excess clearance (ISC) between the skirt and
liner results in undesirable secondary
(transverse) piston motion, noise, and vibration.

* Reducing the ISC (clearance volume) at the
skirt-to-liner interface results in less secondary
motion and improved engine durability.

— Also reduces the relative motion between the
piston and rings, improving ring durability and Traditional Abradable Coating
likely ring sealing capabilities.

« The coatings are soft as applied and can be
applied over a wide range of thicknesses (15 —
250 microns).

* During operation, the high points on the surface
abrade and leave an array of oil-retaining
valleys. The improved oil retention further
minimizes boundary contact between the piston
and cylinder liner.

11k

Prior to Break — In After Break — In
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Summary of Study

« Two piston models generated:
— One with the post-run stock coated geometry, and one with the post-run APC piston geometry.
« The pistons had been installed within two separate Cummins R2.8 L turbo diesel
engines, both of which were subject to several hours of runtime.

« A measurement methodology has been developed to obtain pre- and post-run piston
measurements.

« The effect of the APC piston geometry on piston secondary motion and ring wear is
investigated.

« Askirt profile optimization methodology has been developed to investigate the
geometric features of a piston skirt that lead to reduced frictional losses.
« Terminology:
— APC: Abradable powder coated
— ISC: Integrated skirt clearance

— Boundary Contact: The direct interaction of surfaces without the separation of a lubricating
film. —
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Numerical Modeling of the Power & Mobility

Cilinder Kit (P&M)

« Utilized the Cylinder-Kit Analysis System for Engines
(CASE) by Mid-Michigan Research.

« CASE is a software package that predicts:

— Piston: Thermal and mechanical deformations (including
elastohydrodynamic), boundary and hydrodynamic
frictional losses, axial and lateral piston dynamics, piston
skirt wear.

— Ring: Boundary and hydrodynamic frictional losses, ring
dynamics (including ring collapse and uniform ring twist),
gas flow dynamics, oil vaporization, ring face and groove
side wear.

« Piston lateral dynamics constitute a highly nonlinear
problem that is solved for iteratively considering the
transverse forces acting on the piston due to:

— Combustion gas pressure, connecting rod orientation,
boundary forces between the piston and cylinder liner, and
hydrodynamic forces developed at the piston skirt-to-liner
interface.

S A 0 O
3 R T
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Power & Mobility
Model Inputs and Workflow (P&M)

i

i

i
|

’ Program Inputs ‘

« Geometric inputs obtained via direct measurement of

Engine Geometry

engine Components. | Measurements
— CAD model generated in Siemens NX and then meshed Mfc -
in Altair HypermeSh I . i - >I CASE-PISTON Analysis
Combustion gas pressure obtained via experimental o * /
pressure transducer measurements. £ ! e
— Averag(_a of 250 cycles obtained at 0.1 crank angle o }7 —y
degree Increments — : Cyclic piston dynamics,
* GT - Power model was generated and calibrated S
using experimental data and turbocharger maps. This Parameter

model was then used to estimate combustion gas and Engine Speed 2000 RPM
liner temperatures. R 94.25 mm (At

. . . . . Operating Temp.)
«  Surface texture inputs for piston obtained via optical Stock Piston Diameter [T TIpRsem
profilometry (Michigan Metrology). Bore surface
texture inputs obtained via stylus profilometry and a
literature review [1-2].

» Piston thermal boundary condition estimates
obtained via literature review [3-5]. Compression Ratio

APC Piston Diameter 93.957 mm (Cold)
Stock Piston Ovality -0.3505 mm
APC Piston Ovality -0.4267 mm
100 mm
16.9

<

NDIR
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Modeling Thermal Distortions Power & 'V'(gt;icl%

« Thermal expansion significantly alters the geometry and clearances at the skirt-to-liner
interface.
« Maximum expansion on the piston skirt top is approximately 190 microns.
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Worn APC Skirt Vs. Worn Stock Power & Mobility

Skirt (P&M)
e

Axial piston trace taken along skirt center.

Circumferential trace taken at 0.632” from skirt bottom, m

at the gauge point.

. : - - 588.741
APC piston coating eliminates a significant amount of “ 4 An 18% ]

ISC. APC 482.627
The Axial trace and circumferential trace are *Clearances above 0.02 inches were assumed to be off the

superimposed to determine the clearance around the skirt. skirt and were therefore filtered out of the ISC calculation
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Piston Dynamics Modeling

Results
* Piston eccentricities = transverse position in the cylinder €%
bore at several axial locations along the piston centerline. I
* Ingeneral, the eccentricity at the pin height and the piston N ew X,

tilt angle are sufficient to characterize the secondary
motion of the piston.

« The APC piston experiences a significant reduction in
secondary motion and piston tilt.
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Ring Groove Side Wear Modeling

8\16\22

Wear is proportional to the relative
motion between the ring and groove.

Archard’s model used to estimate wear:
- P =k(ED)
1 = worn volume
k = wear coefficient
W, = asperity contact load
» L =relative sliding distance
H = surface hardness

Piston secondary motion is a significant
contributor to ring/groove relative
motion, greatly influencing ring wear.

The reduced secondary motion of the
APC piston is predicted to yield a
significant reduction in ring wear.
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Definition of Optimization
Problem

* Hypothesis: APC piston skirt profile will
wear to minimize boundary contact
between the skirt and cylinder liner.

* Objective: Minimize the average cyclic
power loss over one engine cycle.

— This is the product of piston velocity and
frictional forces (both shear friction and contact
friction).

« The Skirt profile is defined by a fourth-
order polynomial which is calculated from
5 parametric values [ag through ay].

» Constraint: Optimized skirt radius must be
larger than the stock skirt radius, as the
coating adds material to the piston skirt.

Power & Mobility

vl

Top of Skir‘r/

Piston

ay

Bottom of Skk

(P&M)

| Oil Ring Groove

A (profile height at top)

» V(X)

(derivative of profile at top)

a
(location of maximum)

SKkirt Profile

a3

(maximum profile height)

a4 (profile height at bottom) X
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Optimization Results and

Breakdown
- ]

It can be estimated that 10% to 25% 0 . : ; ; :
of engine frictional losses occur at the \ -
skirt-to-liner interface [14]. £10} 3600 RPM ]|

— average of 17.5% %

«  FMEP = NMEP - BMEP a

+  Experimental FMEP at 2000 RPM = 1
2.25 Bar = 3.52 Cy;fder x 0.175 ~ E:
460 W e | . _ - _ _

* Measured FMEP at 3600 RPM = 80 60 40 20 0 20 40
275 bar — ~ 1000 W Skirt Profile (;2m) (Distance From Nominal Radius)

* Measured FMEP values in close m
agreement with model prediction. m o 417.96 W —

* An estimated 0.77% gain in peak m 1324w 505,05 W 10.92%
power and BSFC.
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Conclusion and Future Work

Worn APC piston exhibits a significantly smaller ISC than the worn stock piston.

— This yields a significant reduction in piston secondary motion. The reduction in

secondary motion yields a significant reduction in ring groove side wear. This is
expected to improve ring durability.

— Experimental engine tests are underway to compare a stock engine to an engine with
APC pistons.

« The optimization study suggests that the addition of material to the piston skirt can
reduce friction by geometric changes.
* Moving Forward:

— Improve the model inputs and relax assumptions including:
 Constant thermal boundary conditions
 Uniform bore diameter
* “Fully flooded” skirt assumption

— Analyze experimental engine data from two engines: one with APC pistons, and the other
with a stock configuration.

— Update model inputs with data from the more recent experimental engine riit

a
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Optimization Results and Power & Mobility
Breakdown (P&M)

« Optimized profiles yield a large
decrease in boundary friction at the
expense of a small increase in
hydrodynamic friction,

N UL SRR S B ONFIGURATION | HYDRODYNAMIC | BOUNDARY
oil film as opposed to surface asperities,
yielding the increase in hydrodynamic shear 2000 RPM
friction. ORIGINAL 104.83 W 364.06 W

» Future optimization studies will 2000 RPM 105.46 W 312.50 W
include the piston ovality, which OPTIMIZED ' '
characterizes: the sk_irt geometry Zsr?.gm 364.06 W 259.92 W
around the piston circumference. p—

 Engine speed and load were varied, OPTIMIZED S S
although thermal boundary conditions
and bore diameter were held constant.

— Future efforts will include the relaxation of
this assumption and additional optimization 14

studies. . N

8\16\22



